Abstract

This paper presents some data and results from a seismic refraction experiment, completed mainly in 1979 in the Rhenish Massif, Federal Republic of Germany and extending through Luxembourg and Belgium into the Paris Basin in France. Velocity-depth functions have been derived for each record section independently, based on the assumption that velocity varies only with depth: these models are being improved upon by time-term and ray-tracing methods capable of handling laterally varying velocity structures and by calculating synthetic seismograms. The P g phase which is observed very clearly on all record sections represents a refracted wave, with velocity generally > 6 km/s, from depths below 1.5–5.5 km. Along the 600 km long main profile one intracrustal reflection can usually be recognized, while from the three shorter crossing profiles in the massif two intracrustal reflectors can always be seen. Beneath much of the main profile the crust-mantle boundary is either a first order discontinuity or thin (< 1 km) transition zone at ~30 km depth. However, beneath the Ardennes and West Eifel there is a 6–12 km thick transition zone before a velocity of 8.1 km/s is reached at ~36 km depth. Beneath the crossing profiles, there is generally a transition zone < 3 km thick between crust and mantle. In some cases, there can be recognized at the top of the mantle a thin high velocity layer which is underlain by a low velocity layer which, in turn, is underlain by a reflector 4–11 km below the crust-mantle boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call