Abstract

The National Institute of Standards and Technology (NIST) and SEMATECH are working to address traceability issues in semiconductor dimensional metrology. In semiconductor manufacturing, many of the measurements made in the fab are not traceable to the SI unit of length. This is because a greater emphasis is often placed on precision and tool matching than on accuracy. Furthermore, the fast pace of development in the industry makes it difficult to introduce suitable traceable standard artifacts in a timely manner. To address this issue, NIST and SEMATECH implemented a critical-dimension atomic-force-microscope-based reference measurement system (RMS). The system is calibrated for height, pitch, and width, and has traceability to the SI definition of length in all three axes. Because the RMS is expected to function at a higher level of performance than inline tools, the level of characterization and handling of uncertain sources is on a level usually seen in instruments at national measurement institutes. In this work, we discuss recent progress in reducing the uncertainty of the instrument as well as details of a newly implemented performance monitoring system. We also present an example of how the RMS concept can be used in a semiconductor manufacturing environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.