Abstract

Graphene is a one-atom-thick planar sheet of sp2-hybridized orbital bonded honeycomb carbon crystal. Its gapless and linear energy spectra of electrons and holes lead to the unique carrier transport and optical properties, such as giant carrier mobility and broadband flat optical response. As a novel material, graphene has been regarded to be extremely suitable and competent for the development of terahertz (THz) optical devices. In this paper, the fundamental electronic and optic properties of graphene are described. Based on the energy band structure and light transmittance properties of graphene, many novel graphene based THz devices have been proposed, including modulator, generator, detector, and imaging device. This progress has been reviewed. Future research directions of the graphene devices for THz applications are also proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.