Abstract

Mechanical power of ventilation, currently defined as the energy delivered from the ventilator to the respiratory system over a period of time, has been recognized as a promising indicator to evaluate ventilator-induced lung injury and predict the prognosis of ventilated critically ill patients. Mechanical power can be accurately measured by the geometric method, while simplified equations allow an easy estimation of mechanical power at the bedside. There may exist a safety threshold of mechanical power above which lung injury is inevitable, and the assessment of mechanical power might be helpful to determine whether the extracorporeal respiratory support is needed in patients with acute respiratory distress syndrome. It should be noted that relatively low mechanical power does not exclude the possibility of lung injury. Lung size and inhomogeneity should also be taken into consideration. Problems regarding the safety limits of mechanical power and contribution of each component to lung injury have not been determined yet. Whether mechanical power-directed lung-protective ventilation strategy could improve clinical outcomes also needs further investigation. Therefore, this review discusses the algorithms, clinical relevance, optimization, and future directions of mechanical power in critically ill patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.