Abstract

Development of an effective vaccine against tuberculosis hinges on an improved understanding of the human immune response to Mycobacterium tuberculosis. Work in this area at the University of Texas Health Science Center at Tyler has led to advances in four areas: (1) natural killer cells contribute to innate immunity by lysing M. tuberculosis-infected mononuclear phagocytes, and to adaptive immunity by enhancing the CD8+ T-cell effector function and inhibiting expansion of T regulatory cells; (2) Interferon-gamma plays a central role in resistance to many intracellular pathogens, including M. tuberculosis, and we have identified three transcription factors that bind to the Interferon-gamma proximal promoter and increase Interferon-gamma transcription in live T-cells that are activated by M. tuberculosis antigens; (3) A DNA vaccine that encodes the M. tuberculosis 10fts;kDa culture filtrate protein and the lysosomal integral membrane protein-2 was produced to direct vaccine antigens to the MHC class II processing and presentation pathway. When this vaccine was coated with polyethylenimine and administered to mice, it yielded a remarkably potent pulmonary immune response that reduced the bacillary burden by 90% after M. tuberculosis challenge; (4) The early secreted antigenic target of 6fts;kDa (ESAT-6) is a putative vaccine antigen. We found that high concentrations of this antigen markedly inhibit Interferon-gamma production by T-cells and are working to understand the molecular mechanisms underlying this effect. Developing methods to enhance NK cell functions that favor protective immunity, increase interferon-gamma transcription, elicit protective pulmonary immune responses and prevent ESAT-6 from inhibiting T-cell function will contribute significantly to development of antituberculosis vaccines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call