Abstract

The emergence of the 5 G technology and universal smart electron devices urgently call for the exploration of highly efficient microwave absorption materials. MoS2 is a potential dielectric microwave absorption material that offers the benefits of diverse morphologies/structures, adjustable bandgap, easy defects production, controllable electrical conductivity and high stability, but suffers from single dielectric loss capacity and impedance mismatching. Structural regulations and hybridization with foreign components have been extensively used to improve the microwave absorption performance of MoS2. This review introduces the characteristics and microwave absorption mechanisms of MoS2 nanomaterials for a comprehensive analysis, and systematically emphasizes the related key issues by summarizing progress of MoS2-based microwave absorption materials. Three strategies are considered, namely (1) structural regulation of MoS2 monocomponent via the control of morphology, heteroatom doping, defects and phases; (2) loss mechanism regulation of binary MoS2-based composites via hybridization with other dielectric materials (e.g., carbon, MXene and polymer) or magnetic materials (e.g., ferrites and magnetic metals/alloys); (3) realization of multicomponent MoS2-based composites with multidimensional hierarchical architectures using one-, two- and three-dimensional structures. Micro/nanostructure regulation, hybridization with foreign material and architectural design are discussed as the methods of controlling the loss mechanisms, impedance matching and microwave absorption performance of MoS2-based composites. Finally, the ongoing challenges and future opportunities are prospected to surmount the current barriers and provide forward-looking guidance for the exploration of novel highly efficient MoS2-based microwave absorption materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.