Abstract
Solid acid fuel cells represent a relatively new technology with the advantage of an intermediate operating temperature of 240°C and a solid state proton conducting electrolyte (CsH2PO4). Widespread commercial application has been hindered mainly by low performance and costly electrodes containing a high Pt loading. Here we review the recent progress and current status of solid acid fuel cell electrodes. Major efforts include creating nanostructured composites leading to much reduced Pt loadings while maintaining or even increasing performance. Furthermore, fundamental studies on Pt thin films, as geometrically controlled electrodes, have recently revealed the possibility of an electrochemical pathway through the two-phase boundary in addition to the classic three-phase boundary. Carbon nanotubes as electronic interconnects have been shown to dramatically improve Pt catalyst utilization and hence electrode performance. Major efforts are spent to search for alternative, non-precious metal catalysts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have