Abstract

The oxide/organic interfaces play crucial roles in the hole injection from the anode electrodes to the emitting organics in organic light-emitting diodes (OLEDs), and hence have strong impacts on the efficiencies and other properties of the devices. Indium-tin oxide (ITO) is currently the most popular anode material used in OLEDs due to several merits, such as good etch ability, good adherence, high transparency, low resistivity, and high work function. Interfacial engineering between the ITO electrode and the overlying organic layers is an important process to obtain the high performance of the diode devices. In this article, recent progress in modification of the ITO/organic interfaces is reviewed, as these interfaces are important to the development of the technologies aiming at improving the electroluminescence, and efficiencies as well as reducing the operation voltages of OLEDs. ITO/Organic interfacial properties can be controlled or modified by simply changing the surface properties of ITO using chemical or physical treatments, and by adding a buffer layer (e.g., metal, oxide, or organic thin films) between the ITO and hole transport or emitting organic layers. The literature data showed that the electroluminescence, efficiencies, and lifetimes of the OLEDs could be greatly increased and the operation voltage considerably decreased when the ITO/organic interfaces have been properly improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.