Abstract

AbstractTo secure future supply of aromatics, methane is a commercially interesting alternative feedstock. Direct conversion of methane into aromatics combines the challenge of activating one of the strongest C−H bonds in all hydrocarbons with the selective aromatization over zeolites. To address these challenges, smart catalyst and process design are a must. And for that, understanding the most important factors leading to successful methane C−H bond activation and selective aromatization is needed. In this review, we summarize mechanistic insight that has been gained so far not only for this reaction, but also for other similar processes involving aromatization reactions over zeolites. With that, we highlight what can be learnt from similar processes. In addition, we provide an overview of characterization tools and strategies, which are useful to gain structural information about this particular metal‐zeolite system at reaction conditions. Here we also aim to inspire future characterization work, by giving an outlook on characterization strategies that have not yet been applied for the methane dehydroaromatization catalyst, but are promising for this system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.