Abstract
In this paper we calculate Lyapunov exponents and adapt a diagnostic tool, originally used for another purpose by Lorenz (1969), to characterize the degree and nature of the chaotic behavior observed in a thermally driven rotating fluid annulus at different points in parameter space as a control parameter (the rotation rate) is varied over a significantly wide range. We also report on our initial progress toward making the annulus experiments more relevant to the behavior of baroclinic waves in Earth's atmosphere. Owing to the existence of a background potential vorticity gradient, baroclinic waves in the atmosphere propagate both meridionally and vertically and are not trapped as they are in conventional annulus experiments. Our approach involves the redesign of such experiments through the application of radiational heating from above to provide a background potential vorticity gradient on which baroclinic waves can travel. These experiments are in their earliest stage of design and implementation. If successful, they promise to provide a new paradigm for future experiments with thermally driven rotating fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.