Abstract

Abstract. A novel mechanism for the short-scale Rossby waves interacting with long-scale zonal flows in the Earth's atmosphere is studied. The model is based on the parametric excitation of convective cells by finite amplitude Rossby waves. We use a set of coupled equations describing the nonlinear interaction of Rossby waves and zonal flows which admits the excitation of zonal flows. The generation of such flows is due to the Reynolds stresses of the finite amplitude Rossby waves. It is found that the wave vector of the fastest growing mode is perpendicular to that of the pump Rossby wave. We calculate the maximum instability growth rate and deduce the optimal spatial dimensions of the zonal flows as well as their azimuthal propagation speed. A comparison with previous results is made. The present theory can be used for the interpretation of existing observations of Rossby type waves in the Earth's atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call