Abstract
All-solid-state batteries have piqued global research interest because of their unprecedented safety and high energy density. Significant advances have been made in achieving high room-temperature ionic conductivity and good air stability of solid-state electrolytes (SSEs), mitigating the challenges at the electrode-electrolyte interface, and developing feasible manufacturing processes. Along with the advances in fundamental study, all-solid-state pouch cells using inorganic SSEs have been widely demonstrated, revealing their immense potential for industrialization. This review provides an overview of inorganic all-solid-state pouch cells, focusing on ultrathin SSE membranes, sheet-type thick solid-state electrodes, and bipolar stacking. Moreover, several critical parameters directly influencing the energy density of all-solid-state Li-ion and lithium-sulfur pouch cells are outlined. Finally, perspectives on all-solid-state pouch cells are provided and specific metrics to meet certain energy density targets are specified. This review looks to facilitate the development of inorganic all-solid-state pouch cells with high energy density and excellent safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.