Abstract
CO2 is an environmentally friendly heat transfer fluid and has many advantages in thermal energy and power systems due to its peculiar thermal transport and physical properties. Supercritical CO2 (S-CO2) thermal energy conversion systems are promising for innovative technology in domestic and industrial applications including heat pump, air-conditioning, power generation, renewable energy systems, energy storage, thermal management, waste heat recovery and others. Both S-CO2 and transcritical CO2 thermodynamic cycles have been extensively investigated in order to improve the efficiencies of thermal and power systems and achieve net zero carbon emissions. This paper focuses on the progress and prospects for current research and technology development of S-CO2 thermal energy conversion systems and their applications including power generation, energy storage and waste heat recovery. First, the CO2 thermal transport and physical properties and benefits using CO2 as a heat transfer fluid in thermal energy and power systems are discussed. Then, classification of CO2 thermodynamic systems is presented. Next, S-CO2 for power generation, energy storage and waste heat recovery systems are presented. Finally, research needs of subcritical and supercritical CO2 heat transfer, fluid flow and heat exchangers for the development of various thermal energy and power systems are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.