Abstract
LEDs based on planar InGaN/GaN heterostructures define an important standard for solid-state lighting. However, one drawback is the polarization field of the wurtzite heterostructure impacting both electronâhole overlap and emission energy. Three-dimensional coreâshell microrods offer field-free sidewalls, thus improving radiative recombination rates while simultaneously increasing the light-emitting area per substrate size. Despite those promises, microrods have still not replaced planar devices. In this review, we discuss the progress in device processing and analysis of microrod LEDs and emphasize the perspectives related to the 3D device architecture from an applications point of view.
Highlights
InGaN/GaN-based coreâshell nano- and microrods for light-emitting diode (LED) applications have been a vivid research topic in recent years [1,2,3]
We discuss the progress in device processing and analysis of microrod LEDs and emphasize the perspectives related to the 3D device architecture from an applications point of view
This review focuses on bottom-up, coreâshell InGaN/GaN LEDs
Summary
InGaN/GaN-based coreâshell nano- and microrods for light-emitting diode (LED) applications have been a vivid research topic in recent years [1,2,3]. Progress and Challenges of InGaN/GaN-Based CoreâShell Microrod LEDs. Materials 2022, 15, 1626. This review focuses on bottom-up, coreâshell InGaN/GaN LEDs. First, the properties of the microrods and the associated crystal facets are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.