Abstract

The rapid proliferation and infection of bacteria, especially multidrug-resistant bacteria, have become a great threat to global public health. Focusing on the emergence of “super drug-resistant bacteria” caused by the abuse of antibiotics and the insufficient and delayed early diagnosis of bacterial diseases, it is of great research significance to develop new technologies and methods for early targeted detection and treatment of bacterial infection. The exceptional effects of metal nanoparticles based on their unique physical and chemical properties make such systems ideal for the detection and treatment of bacterial infection both in vitro and in vivo. Metal nanoparticles also have admirable clinical application prospects due to their broad antibacterial spectrum, various antibacterial mechanisms and excellent biocompatibility. Herein, we summarized the research progress concerning the mechanism of metal nanoparticles in terms of antibacterial activity together with the detection of bacterial. Representative achievements are selected to illustrate the proof-of-concept in vitro and in vivo applications. Based on these observations, we also give a brief discussion on the current problems and perspective outlook of metal nanoparticles in the diagnosis and treatment of bacterial infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.