Abstract

Infectious diseases caused by pathogenic bacteria, especially multidrug-resistant bacteria, and their global spreading have become serious public health concerns. Early diagnosis and effective therapy can efficiently prevent deterioration and further spreading of the infections. There is an urgent need for sensitive, selective, and facile diagnosis as well as therapeutically potent treatment. The emergence of nanotechnology has provided more options for diagnosis and treatments of bacterial infections. Metal nanoparticles and metal oxide nanoparticles have drawn intense attention owing to their unique optical, magnetic, and electrical properties. These versatile metal-based nanoparticles have great potential for selective detection of bacteria and/or therapy. This review gives an overview of recent efforts on developing various metal-based nanoparticles for bacterial detection and infection therapy. It begins with an introduction of fundamental concepts and mechanisms in designing diagnostic and therapeutic strategies. Representative achievements are selected to illustrate the proof-of-concept in vitro and in vivo applications. A brief discussion of challenges and perspective outlook in this field is provided at the end of this review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.