Abstract

Scars place a heavy burden on both individuals and society. Our previous study found that reduction of progranulin (PGRN) promotes fibrogenesis in mouse skin wound healing. However, the underlying mechanisms have not been elucidated. Here, we report that PGRN overexpression decreases the expression of profibrotic genes alpha-smooth muscle actin (αSMA), serum response factor (SRF), and connective tissue growth factor (CTGF), thereby inhibiting skin fibrosis during wound repair. Bioinformatics analysis suggested that the heat shock protein (Hsp) 40 superfamily C3 (DNAJC3) is a potential downstream molecule of PGRN. Further experiments showed that PGRN interacts with and upregulates DNAJC3. Moreover, this antifibrotic effect was rescued by DNAJC3 knockdown. In summary, our study suggests that PGRN inhibits fibrosis by interacting with and upregulating DNAJC3 during wound healing in mouse skin. Our study provides a mechanistic explanation of the effect of PGRN on fibrogenesis in skin wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call