Abstract

Many natural biomacromolecules are homochiral and are built from constituents possessing identical handedness. The construction of synthetic molecules, macromolecules, and supramolecular structures with tailored stereochemical sequences can detail the relationship between chirality and function and provide insight into the process that leads to the selection of handedness and amplification of chirality. Dendritic dipeptides, previously reported from our laboratory, self-assemble into helical porous columns and serve as fundamental mimics of natural porous helix-forming proteins and supramolecular polymers. Herein, the synthesis of all stereochemical permutations of a self-assembling dendritic dipeptide including homochiral, heterochiral, and differentially racemized variants is reported. A combination of CD/UV-vis spectroscopy in solution and in film, X-ray diffraction, and differential scanning calorimetry studies in solid state established the role of the stereochemistry of the dipeptide on the thermodynamics and mechanism of self-assembly. It was found that the highest degree of stereochemical purity, enantiopure homochiral dendritic dipeptides, exhibits the most thermodynamically favorable self-assembly process in solution corresponding to the greatest degree of helical order and intracolumnar crystallization in solid state. Reducing the stereochemical purity of the dendritic dipeptide through heterochirality or by partially or fully racemizing the dendritic dipeptide destructively interferes with the self-assembly process. All dendritic dipeptides were shown to coassemble into single columns regardless of their stereochemistry. Because these columns exhibit no deracemization, the thermodynamic advantage of enantiopurity and homochirality suggests a mechanism for stereochemical selection and chiral amplification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.