Abstract

Accurate homologue synapsis during meiosis is essential for faithful chromosome segregation and formation of viable gametes. The finding of Spo11-dependent gamma-H2AX (γH2AX) formation during leptotene and data on mutant mice have led to the notion that synapsis in mammals depends on meiotic DNA double-stranded break (DSB) repair. A second wave of ataxia telangiectasia mutated (ATM) and Rad3-related (ATR)-dependent γH2AX formation has been observed in Atm-null mice during zygotene, suggesting that this wave of phosphorylation also occurs in normal mice. Here I aimed to confirm and to analyse in deep this wave of phosphorylation. Immunostaining of spread spermatocytes shows that γH2AX accumulates on the short last axis stretches to pair. This accumulation appears within all the nuclei undergoing a specific step of late zygotene and disappears from every spermatocyte immediately after pairing completion. This γH2AX signal co-localises with ATR, is Spo11-independent and does not co-localise with free DNA 3'-end labelling. I conclude that ATR/γH2AX asynapsis signalling at the end of zygotene belongs to a physiologically programmed pathway operating at a specific meiotic step, and I propose that this pathway is involved in the triggering of a phase of DSB-independent chromosome pairing that leads to synapsis completion in normal mouse meiosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.