Abstract

Recently, hybrid nanodevices consisting of more than one type of nanomaterial, have been an intense research topic as far as science and advanced functionalities of such systems are concerned. However, lack of controlled, scalable and directed assembly techniques for these hybrid systems, particularly the accurate assembly of nanoparticles (NPs) on nanowires (NWs), has resulted in their limited applications. In the present work, a development has been reported using dielectrophoresis (DEP) technique through which a controlled assembly of palladium (Pd) NPs on VO2 NWs has been deposited. Furthermore, modulation in conductivity of VO2 NWs as a function of the NPs density is electrically measured and interpreted through work-function dependent surface doping effect of the Pd NPs on VO2 NWs. This well-controlled and scalable approach to functionalize VO2 NWs by assembling Pd NPs is significant in the view of a huge potential of Pd NPs like sensor applications thus adding functionalities to VO2 NWs. Our approach can be generalized for the large-scale assembly of a variety of NP-NW combination to fabricate advanced functional hybrid devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.