Abstract

The synthesis and magnetic behavior of matrix-supported Pd and PdO nanoparticles (NPs) are described. Mesoporous silica with hexagonal columnal packing is selected as a template, and the impregnation method with thermal annealing is used to obtain supported Pd and PdO NPs. The heating rate and the annealing conditions determine the particle size and the phase of the NPs, with a fast heating rate of 30 °C/min producing the largest supported Pd NPs. Unusual magnetic behaviors are observed. (1) Contrary to the general belief that smaller Pd NPs or cluster size particles have higher magnetization, matrix-supported Pd NPs in this study maintain the highest magnetization with room temperature ferromagnetism when the size is the largest. (2) Twin boundaries along with stacking faults are more pronounced in these large Pd NPs and are believed to be the reason for this high magnetization. Similarly, supported PdO NPs were prepared under air conditions with different heating rates. Their phase is tetragonal (P42/mmc) with cell parameters of a = 3.050 Å and c = 5.344 Å, which are slightly larger than in the bulk phase (a = 3.03 Å, c = 5.33 Å). Faster heating rate of 30 °C/min also produces larger particles and larger magnetic hysteresis loop, although magnetization is smaller and few twin boundaries are observed compared to the supported metallic Pd NPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.