Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Increasing evidence has demonstrated that the damage of cell plays an important role in AD. Cell death is a critical phenomenon for physiological functions, which promotes AD pathogenesis. Programmed cell death, including necroptosis, pyroptosis, autophagy, and ferroptosis, have been discovered that have unique biological functions and pathophysiological characteristics. Here, we review the available evidence detailing the mechanisms of programmed microglial death, including pyroptosis, autophagy, and ferroptosis. We also highlight the role of programmed death of microglia during the process of AD and focus on the connection between the disease and cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call