Abstract
In this study, we demonstrate the implementation of programmable threshold logics using a 32 × 32 memristor crossbar array. Thanks to forming-free characteristics obtained by the annealing process, its accurate programming characteristics are presented by a 256-level grayscale image. By simultaneous subtraction between weighted sum and threshold values with a differential pair in an opposite way, 3-input and 4-input Boolean logics are implemented in the crossbar without additional reference bias. Also, we verify a full-adder circuit and analyze its fidelity, depending on the device programming accuracy. Lastly, we successfully implement a 4-bit ripple carry adder in the crossbar and achieve reliable operations by read-based logic operations. Compared to stateful logic driven by device switching, a 4-bit ripple carry adder on a memristor crossbar array can perform more reliably in fewer steps thanks to its read-based parallel logic operation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.