Abstract

Continuous spindle speed variation, especially under sinusoidal speed law, is a well-known effective and flexible technique to suppress chatter vibration by disrupting regenerative effect in high-lobe-number zone. In most researches, its optimal design parameters (i.e. amplitude and frequency of spindle speed variation) are selected to maximize cutting depth by using complex stability simulations, which take much time and require machine tool dynamics. In this paper, novel simple criteria, only according to chatter frequency and nominal spindle speed, is proposed to select optimal amplitude and frequency of sinusoidal spindle speed variation (S3V). Under assumption that the variation amplitude and frequency is low in practice, modulation index for S3V can be introduced by analogy between S3V and frequency modulation technique in radio engineering. Then, the proposed formula to select optimal parameters is introduced based on kinematic process energy analysis with modulation index as an argument of Bessel function. Although the proposed method does not give information about stability limit, it has potential to contribute to intelligent active chatter suppression by automatic selection of S3V parameters combined with chatter monitoring system. Some boring tests were conducted to verify the proposed formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.