Abstract

Chatter is one of the most critical problems that causes poor surface quality and restriction of machining efficiency. Spindle speed variation (SSV) is a well-known technique for suppression of regenerative chatter. However, in the authors’ understanding, the chatter suppression effect diminishes when the spindle speed difference between the present and previous cutting moments is small. Furthermore, the stability changes largely according to the spindle speed variation profile which changes with the set condition of SSV parameters, e.g., nominal spindle speed, variation period and variation amplitude. Therefore, SSV parameters should be adequately set to avoid this limitation and to exert its effect throughout the entire duration of cutting. However, there is no clear methodology to determine the optimal condition. This paper presents the characteristics of chatter growth during SSV focusing on the change of chatter frequency, which lead to novel indices to evaluate the chatter stability when cutting with SSV. To verify the validity of the indices, time-domain simulations and the cutting experiments with triangular spindle speed variation (TSSV) are carried out. The influence of SSV parameters on the chatter stability is investigated from the simulation and experimental results. The limitations of widely utilized SSV profiles are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.