Abstract

Fluid manipulation plays an important role in biomedical applications such as biochemical assays, medical diagnostics, and drug development. Programmable fluidic manipulation at the microscale is highly desired in both fundamental and practical aspects. In this paper, we summarize some of the latest studies that achieve programmable fluidic manipulation through intricate capillaric circuits design, construction of biomimetic metasurface, and responsive surface wettability control. We highlight the working principle of each system and concisely discuss their design criterion, technical improvements, and implications for future study. We envision that with multidisciplinary efforts, microfluidics would continue to bring vast opportunities to biomedical fields and make contributions to human health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call