Abstract

Abstract This article outlines a proof-theoretic approach to developing correct and terminating monadic parsers. Using modified realizability, we extract formally verified and terminating programs from formal proofs. By extracting both primitive parsers and parser combinators, it is ensured that all complex parsers built from these are also correct, complete and terminating for any input. We demonstrate the viability of our approach by means of two case studies: we extract (i) a small arithmetic calculator and (ii) a non-deterministic natural language parser. The work is being carried out in the interactive proof system Minlog.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.