Abstract

The prediction of clinical outcome for patients with infiltrative gliomas is challenging. Although preoperative hematological markers have been proposed as predictors of survival in glioma and other cancers, systematic investigations that combine these data with other relevant clinical variables are needed to improve prognostic accuracy and patient outcomes. We investigated the prognostic value of preoperative hematological markers, alone and in combination with molecular pathology, for the survival of 592 patients with Grade II-IV diffuse gliomas. On univariate analysis, increased neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR), and decreased albumin-to-globulin ratio (AGR), all predicted poor prognosis in Grade II/III gliomas. Multivariate analysis incorporating tumor status based on the presence of IDH mutations, TERT promoter mutations, and 1p/19q codeletion showed that in lower-grade gliomas, high NLR predicted poorer survival for the triple-negative, IDH mutation only, TERT mutation only, and IDH and TERT mutation groups. NLR was an independent prognostic factor in Grade IV glioma. We therefore propose a prognostic model for diffuse gliomas based on the presence of IDH and TERT promoter mutations, 1p/19q codeletion, and NLR. This model classifies lower-grade gliomas into nine subgroups that can be combined into four main risk groups based on survival projections.

Highlights

  • Gliomas are the most common malignant primary brain tumors, accounting for 27% of all central nervous system (CNS) tumors [1]

  • IDH mutations were found in 246 cases (42.9%), mutations in TERT promoter were detected in 286 cases (49.9%), and chromosome 1p/19q codeletion was detected in 139 cases (34.4%)

  • Data from a large cohort of gliomas (n = 592) were used to corroborate previous findings on the 5 glioma molecular groups defined by three robust markers, 1p/19q codeletion, IDH mutations, and TERT

Read more

Summary

Introduction

Gliomas are the most common malignant primary brain tumors, accounting for 27% of all central nervous system (CNS) tumors [1]. Research on molecular alterations in gliomas has revealed three noteworthy biomarkers, namely codeletion www.aging-us.com of chromosome arms 1p and 19q (1p/19q codeletion), and mutations in IDH and the TERT promoter, that can be used to classify Grade II-IV gliomas into five principal molecular groups (triple-positive, IDH and TERT mutations, IDH mutation only, triple-negative, and TERT mutation only). These groups are associated with distinct prognosis, germline variants, and median age at diagnosis, highlighting different pathogenic mechanisms [3]. It is necessary to identify more appropriate and effective biomarkers for predicting prognosis in glioma patients

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call