Abstract

AimsWe hypothesized that grading of diastolic dysfunction (DDF) according to two DDF grading algorithms and strain imaging yields prognostic information on all‐cause mortality in patients with heart failure with reduced ejection fraction (HFrEF).Methods and resultsWe enrolled ambulatory HFrEF (left ventricular ejection fraction < 45%; N = 1 065) patients who underwent echocardiography and speckle tracking assessment of global longitudinal strain (GLS). Patients were stratified according to DDF grades (Grades I–III) according to two contemporary DDF grading algorithms. Prognostic performance was assessed by C‐statistics. Of the originally 1 065 enrolled patients, a total of 645 (61%) patients (age: 67 ± 11 years, male: 72%, ejection fraction: 27 ± 9%) were classified according to both DDF grading algorithms. Concordance between the algorithms was moderate (kappa = 0.48) and the reclassification rate was 33%. During a median follow‐up of 3.3 years (1.9, 4.7 years), 101 (16%) died from all causes. When comparing DDF Grade I vs. Grade III, both algorithms provided prognostic information [Nagueh: (hazard ratio) HR 2.09, 95% confidence interval (CI),1.32–3.31, P = 0.002; Johansen: HR 2.47, 95% CI, 1.57–3.87, P < 0.001]. However, when comparing DDF Grade II vs. Grade III, only the Johansen algorithm yielded prognostic information (Nagueh: HR 1.04, 95% CI, 0.60–1.77, P = 0.90; Johansen: HR 2.26, 95% CI, 1.35–3.77, P = 0.002). We found no difference in prognostic performance between the two algorithms (C‐statistics: 0.604 vs. 0.623, P = 0.24). Assessed by C‐statistics, the most powerful predictors of the endpoint from the two algorithms were E/e'‐ratio (C‐statistics: 0.644), tricuspid regurgitation velocity (C‐statistics: 0.625) and E/A‐ratio (C‐statistics: 0.602). When adding GLS to a combination of these predictors, the prognostic performance increased significantly (C‐statistics: 0.705 vs. C‐statistics: 0.634, P = 0.028).ConclusionsEvaluation of DDF in patients with HFrEF yields prognostic information on all‐cause mortality. Furthermore, adding GLS to contemporary algorithms of DDF adds novel prognostic information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.