Abstract

Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease characterized by unknown causes and a poor prognosis. Recent research indicates that age-related mechanisms, such as cellular senescence, may play a role in the development of this condition. However, the relationship between cellular senescence and clinical outcomes in IPF remains uncertain. Data from the GSE70867 database were meticulously analyzed in this study. The research employed differential expression analysis, as well as univariate and multivariate Cox regression analysis, to pinpoint senescence-related genes (SRGs) linked to prognosis and construct a prognostic risk model. The model's clinical relevance and its connection to potential biological processes were systematically assessed in training and testing datasets. Additionally, the expression location of prognosis-related SRGs was identified through immunohistochemical staining, and the correlation between SRGs and immune cell infiltration was deduced using the GSE28221 dataset. The prognostic risk model was constructed based on five SRGs (cellular communication network factor 1, CYR61, stratifin, SFN, megakaryocyte-associated tyrosine kinase, MATK, C-X-C motif chemokine ligand 1, CXCL1, LIM domain, and actin binding 1, LIMA1). Both Kaplan-Meier (KM) curves (p = 0.005) and time-dependent receiver operating characteristic (ROC) analysis affirmed the predictive accuracy of this model in testing datasets, with respective areas under the ROC curve at 1-, 2-, and 3-years being 0.721, 0.802, and 0.739. Furthermore, qRT-RCR analysis and immunohistochemical staining verify the differential expression of SRGs in IPF samples and controls. Moreover, patients in the high-risk group contained higher infiltration levels of neutrophils, eosinophils, and M1 macrophages in BALF, which appeared to be independent indicators of poor prognosis in IPF patients. Our research reveals the effectiveness of the 5 SRGs model in BALF for risk stratification and prognosis prediction in IPF patients, providing new insights into the immune infiltration of IPF progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call