Abstract

Withdrawal from the endogenous steroid progesterone (P) after chronic administration increases anxiety and seizure susceptibility via declining levels of its potent GABA-modulatory metabolite 3alpha-OH-5alpha-pregnan-20-one (3alpha,5alphaTHP). This 3alpha,5alpha-THP withdrawal also results in a decreased decay time constant for GABA-gated current assessed using whole cell patch-clamp techniques on pyramidal cells acutely dissociated from CA1 hippocampus. The purpose of this study was to test the hypothesis that the decreases in total integrated GABA-gated current observed at the level of the isolated pyramidal cell would be manifested as a reduced GABA inhibition at the circuit level following hormone withdrawal. Toward this end, adult, female rats were administered P via subcutaneous capsule for 3 wk using a multiple withdrawal paradigm. We then evaluated paired-pulse inhibition (PPI) of pyramidal neurons in CA1 hippocampus using extracellular recording techniques in hippocampal slices from rats 24 h after removal of the capsule (P withdrawal, P Wd). The population spike (PS) was recorded at the stratum pyramidale following homosynaptic orthodromic stimulation in the nearby stratum radiatum. The threshold for eliciting a response was decreased after P Wd, and the mean PS amplitude was significantly increased compared with control values at this time. Paired pulses with 10-ms inter-pulse intervals were then applied across an intensity range from 2 to 20 times threshold. Evaluation of paired-pulse responses showed a significant 40-50% reduction in PPI for PS recorded in the hippocampal CA1 region after P Wd, suggesting an increase in circuit excitability. At this time, enhancement of PPI by the benzodiazepine lorazepam (LZM; 10 microM) was prevented, while pentobarbital (10 microM) potentiation of PPI was comparable to control levels of response. These data are consistent with upregulation of the alpha4 subunit of the GABA(A) receptor (GABAR) as we have previously shown. Moreover, the reduced PPI caused by P Wd was prevented by suppression of GABAR alpha4-subunit expression following intraventricular administration of specific antisense oligonucleotides (1 microg/h for 72 h). These results demonstrating a reduction in PPI following P Wd suggest that GABAergic-mediated recurrent or feed-forward inhibition occurring at the circuit level were decreased following P Wd in female rats, an effect at least partially attributable to alterations in the GABAR subunit gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.