Abstract

Data-driven soft sensor technology has been widely developed to estimate quality-related variables, while following difficulties still limit its application in batch processes, such as different initial conditions, uneven-length of batches, and the extraction of within-batch multiphase features. To address these problems, a quality prediction and monitoring framework is proposed. Variables related to quality-related variables are first selected, and a data stacked strategy is proposed to transform three-dimensional batch data into time-lagged sequences that can be fed into soft sensor models. Aiming to extract the multiphase features, a novel differential recurrent neural networks is established by embedding differential operations into long short-term memory neural networks. Moreover, to ensure profitability, prediction residuals are employed for quality monitoring. Case study on a simulation dataset and an industrial-scale penicillin fermentation process demonstrates the effectiveness of the proposed method and its applicability to batch process monitoring and control in both academic research and industrial operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call