Abstract

Surrogate modeling is used to replace computationally expensive simulations. Neural networks have been widely applied as surrogate models that enable efficient evaluations over complex physical systems. Despite this, neural networks are data-driven models and devoid of any physics. The incorporation of physics into neural networks can improve generalization and data efficiency. The physics-informed neural network (PINN) is an approach to leverage known physical constraints present in the data, but it cannot strictly satisfy them in the predictions. This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints through projection layers derived from KKT conditions. Numerical experiments on Aspen models of a continuous stirred-tank reactor (CSTR) unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.