Abstract

ABSTRACT Reducing costly hospital readmissions of patients with Congestive Heart Failure (CHF) is important. We analyzed 4,661 CHF patients (from 2007 to 2017) using Hidden Markov Models in order to profile CHF readmission risk over time. This method proved practical in identifying three patient groups with distinctive characteristics, which might guide physicians in tailoring personalized care to prevent hospital readmission. We thus demonstrate how applying appropriate AI analytics can save costs and improve the quality of care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.