Abstract

Ultrashallow profiles challenge the capabilities of all characterization techniques. In this article, three diagnostic techniques are tested, secondary ion mass spectrometry (SIMS), capacitance–voltage (C–V) profiling and spreading resistance analysis (SRA). SIMS is used to measure the impurity concentration profiles, C–V is used to measure carrier concentration profiles directly and SRA is used to measure resistivity profiles, from which carrier concentrations can be derived. Both SIMS and SRA are calibrated techniques that relate the measured parameter to concentration or resistivity via calibration standards. C–V derives the carrier concentration directly through a mathematical model and calculation. Some of the assumptions, procedures, and limitations of these three techniques for ultrashallow profiles are reviewed and discussed. For this article these diagnostic techniques were used to examine six wafers that had been plasma doped followed by a rapid thermal anneal and three wafers that had been beamline implemented followed by a soak anneal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.