Abstract

N-glycosylation of immunoglobulin G (IgG) has been reported to change in human aging and in some age-related diseases. To further understand the molecular processes that determine these alterations, a detailed examination of individual IgG N-glycans with aging remains required. Mouse is the most commonly used model animal in studies of aging and age-related diseases, and mice have the advantage of relatively controllable genetic and environment variations compared to human. In this study, we systemically investigated the changes in serum IgG N-glycome in C57BL/6 mice during aging at 12 time points (6–80 weeks) via ultraperformance liquid chromatography with fluorescence detection. The study demonstrated several important findings. First, four chromatographic IgG N-glycan peaks were identified for the first time, including a high-mannose glycan, a monoantennary glycan, and two afucosylated glycans. Second, most of the IgG glycan levels changed significantly and presented pronounced gender-related differences from 6 to 12 weeks. Interestingly, all the IgG glycan levels tended to be similar between male and female mice at 12 weeks. Third, the level of fucosylated diantennary glycans containing one N-glycolylneuraminic acid (Neu5Gc)-linked N-acetyllactosamine (LacNAc) decreased gradually and showed a significant negative correlation with age from 24 to 80 weeks (r = −0.716, p < 0.0001), which was not sex-specific. SignificanceMore comprehensive profile of murine IgG N-glycans by ultraperformance liquid chromatography with fluorescence detection was shown in this study with four newly identified chromatographic murine IgG N-glycan peaks. The majority of IgG N-glycans showed substantial stage-specific changes and sex-related differences during mouse aging, indicating a strict regulatory mechanism of glycan synthesis. The level of fucosylated diantennary glycans containing one Neu5Gc-linked LacNAc was significantly negatively correlated with age from 24 to 80 weeks, suggesting its great potential as an aging biomarker. The detailed characteristics of IgG N-glycosylation with aging in C57BL/6 mice demonstrated in the present study could provide essential reference data for studying the function and mechanism of IgG glycosylation in age-related researches based on C57BL/6 mouse models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call