Abstract

This work used scanning nonlinear dielectric microscopy to profile the distributions of carriers in channels and floating gate structures less than 10 nm in size within a three dimensional flash memory cell. An exceptionally sharp diamond probe tip (having a radius of less than 5 nm) was employed so as to obtain extremely high spatial resolution, and this technique was found to provide high contrast images of floating gates. The minimum spatial resolution obtainable from this apparatus was determined to be less than 1.9 nm. In addition, the present study demonstrated that variations in the diffusion lengths of N-type impurities between channels were less than 21 nm. The present study establishes an extremely helpful means of optimizing the performance and failure analysis of flash memory cells and similar devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.