Abstract

Antibiotic resistance is a global health problem, and the role of antibiotics and metal pollution in antibiotic resistance in sediment biocenosis is limited. The occurrence and relationship between antibiotic resistance genes (ARGs), antibiotics, metals and environmental parameters were investigated in vertical layers of sediments in rural and urban lakes. Generally, the total concentrations of seven antibiotics were significantly higher in the rural lake (Lake Taihu = 96%) than in the urban lakes (Xuanwu = 0.3%, Wulongtan = 3%), while similar concentrations were observed for metals (Taihu (34%), Xuanwu (33%) and Wulongtan (33%)). The concentration of metals and antibiotics were mostly higher in the surface sediment layers than the deeper ones (for antibiotics; surface layers = 89%, deeper layer = 11%, for metals; surface = 65%, deep = 35%). The ARGs showed no significant difference between surface and deeper sediments (surface = 48%, deep = 52%, p < 0.05). The potential ecological risk index of Ni, Cu, Zn, Cr, Mn, As, Cd, and Pb contamination showed that Lake Taihu and Wulongtan had moderate ecological risks while Lake Xuanwu had a low ecological risk. Pearson coefficient and network analysis showed that direct and indirect relationship existed among antibiotics, metals, environmental parameters, and ARGs, and the relationship was linked by key environmental components. tetA, blaTEM, SDZ, TOC, OFL, Cd, OTC, NOR, Ni, sulA, AUR, TC, DOX and TN were the major factors that influence the distribution of resistance genes, forming a complex network mechanism of antibiotic resistance. Our study revealed that antibiotics and heavy metals are widely distributed in the surficial sediments and the proliferation of ARGs are influenced by some key environmental components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call