Abstract

Objective: This study focuses on the profile of ambient particulate polycyclic aromatic hydrocarbons (PAHs), their seasonal distribution, source identification and human health risk assessment due to inhalation exposure of ambient PAHs in Delhi, India. Materials and Methods: Two sampling sites were chosen, one at roadway (MH) and other at urban background (JNU) site in Delhi. Determination of PAHs was carried with the help of HPLC with UV detector. Principal component analysis and Molecular diagnostic ratios were used for the source apportionment of PAHs. Health risks associated with inhalation of particulate PAHs were assessed using benzo(a)pyrene equivalent concentration and incremental lifetime cancer risk (ILCR) approach. Results: The results showed that the average mass concentration of Σ16 PAHs near roadway (67.8 ± 40.2 ng m−3) is significantly higher than urban background site (56 ± 30 ng m−3). Moreover, source apportionment study indicated that major PAH-emission sources in Delhi NCR are traffic and coal combustion. ILCR values at both the sites fall in the range of 10−2–10−4 that corresponds to the priority risk level (10−3) and higher than the acceptable risk level (10−6). conclusions: The high PAHs concentration at MH site was due to it’s nearness to busy traffic area. Thus, the spatial variations in PAHs were influenced by local emission sources. The high PAHs level during the winter season can be due to their higher emissions from local heating sources, shift of gas/particle partitioning toward the particulate phase at low temperature and reduced photochemical degradation of some PAHs in winter. The low level of PAHs in monsoon season can be attributed to their wet scavenging and higher percentage in vapor phase. PCA showed that the emissions from vehicles predominate at MH site; whereas, coal combustion and traffic both are the significant PAHs sources at JNU site. Health risk assessment revealed that the highest exposure risks occur at busy traffic site, thereby indicating a significantly higher health risk to the population of Delhi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call