Abstract
The word maps $$ \tilde{w}:\kern0.5em {\mathrm{GL}}_m{(D)}^{2k}\to {\mathrm{GL}}_n(D) $$ and $$ \tilde{w}:\kern0.5em {D}^{\ast 2k}\to {D}^{\ast } $$ for a word $$ w=\prod \limits_{i=1}^k\left[{x}_i,{y}_i\right], $$ where D is a division algebra over a field K, are considered. It is proved that if $$ \tilde{w}\left({D}^{\ast 2k}\right)=\left[{D}^{\ast },{D}^{\ast}\right], $$ then $$ \tilde{w}\left({\mathrm{GL}}_n(D)\right)\supset {E}_n(D)\backslash Z\left({E}_n(D)\right), $$ where En(D) is the subgroup of GLn(D), generated by transvections, and Z(En(D)) is its center. Furthermore if, in addition, n > 2, then $$ \tilde{w}\left({E}_n(D)\right)\supset {E}_n(D)\backslash Z\left({E}_n(D)\right). $$ The proof of the result is based on an analog of the “Gauss decomposition with prescribed semisimple part” (introduced and studied in two papers of the second author with collaborators) in the case of the group GLn(D), which is also considered in the present paper.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have