Abstract
Bio-cellulose is a type of cellulose that is produced by some particular group of bacteria, for example, Komagataeibacter (previously known as Acetobacter), due to their natural ability to synthesize exopolysaccharide as a byproduct. Gluconacetobacter xylinus is mostly employed for the production of bio-cellulose throughout the world. Therefore, exploring other commonly available strains, such as Komagataeibacter aceti (Acetobacter aceti), is needed for cellulose production. Bio-cellulose is one of the most reliable biomaterials in the limelight because it is highly pure, crystalline, and biocompatible. Hence, it is necessary to enhance the industrial manufacturing of bio-cellulose with low costs. Different media such as fruit waste, milk whey, coconut water, sugarcane juice, mannitol broth, and H&S (Hestrin and Schramm's) broth were utilized as a medium for culture growth. Other factors like temperature, pH, and time were also optimized to achieve the highest yield of bio-cellulose. Moreover, after the synthesis of biocellulose, its physicochemical and structural properties were evaluated. The results depicted that the highest yield of bio-cellulose (45.735 mg/mL) was found at 30 °C, pH 5, and on the 7th day of incubation. Though every culture media experimented with synthesized bio-cellulose, the maximum production (90.25 mg/mL) was reported in fruit waste media. The results also indicated that bio-cellulose has high water-holding capacity and moisture content. XRD results showed that bio-cellulose is highly crystalline in nature (54.825% crystallinity). SEM micrograph demonstrated that bio-cellulose exhibited rod-shaped, highly porous fibers. The FTIR results demonstrated characteristic and broad peaks for O-H at 3336.25 cm-1, which indicated strong O-H bonding. The thermal tests, such as DSC and TGA, indicated that bio-cellulose is a thermally stable material that can withstand temperatures even beyond 500 °C. The findings demonstrated that the peel of fruits could be utilized as a substrate for synthesizing bio-cellulose by a rather cheap and easily available strain, Komagataeibacter (Acetobacter aceti MTCC 3347). This alternative culture media reduces environmental pollution, promotes economic advantages, and initiates research on sustainable science.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have