Abstract

To develop an advanced pyrolysis process for various biomass-derived feedstocks and improve product quality and yield, in-depth investigations into the reaction mechanisms are needed. This paper reports on pyrolysis experiments (Py-GC/MSD and FID) with model compounds including the sodium salts of stearic (C 18), oleic (C 18:1), and linoleic (C 18:2) acids principally obtained from alkaline hydrolysis of vegetable oils. Of the parameters studied – temperature (450–750 °C), time (20 s and 80 s), and the degree of unsaturation (i.e., saturated and mono- and dienoic C 18-hydrocarbon chains) – the latter had the most significant effect on the formation of volatile compounds detected in pyrolysates. The results indicated that in the case of sodium stearate, a homologous series of alkenes and alkanes was formed, whereas the pyrolysis of sodium oleate resulted mainly in aromatics, alkenes, and alkanes. In contrast, the most abundant liquefiable volatile products obtained from sodium linolate were aromatics and oxygen-containing compounds. In each case, an increase in temperature and time generally increased the quantity of products formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.