Abstract

Toluene was oxidized by a mutant strain of Pseudomonas putida (strain NG1) to toluene Cis-Glycol (TCG). Product was accumulated in fed-batch cultures to concentrations (18-24 g/L) higher than hitherto achieved. In vitro activities of toluene dioxygenase from P. Putida NG1 were fivefold lower than that from the toluene-grown wild-type organism, whereas comparable activities of both catechol 2,3- and catechol 1,2-oxygenase were obtained; irreversible inhibition of toluene dioxygenase activity by TCG was shown in vitro. Ammonia deprivation during the production phase limited the growth of revertant organisms but had little effect on either the duration (25h) of the process or the final concentration of TCG achieved. The rate of glucose utilization decreased throughout the biotransformation and cell death accompanied the cessation of TCG accumulation in cultures. These changes were a consequence of TCG formation and a cooperative toxic effect was demonstrated for toluene and TCG. Adenylate energy charge values decreased from ca. 0.8 to 0.2 over the course of the biotransformation but were maintained above 0.5 in the absence of TCG. Similarly, cellular AMP levels increased dramatically during biotransformation, presumably as a consequence of RNA degradation, but were maintained at low levels in the absence of TCG. The results suggest that TCG is the mediate of a gradual deterioration in the state of the culture which leads to a loss of both in vivo and in vitro toluence dioxygenase activity and a marked decrease in culture viability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.