Abstract
Plant-associated microbes have evolved the ability to independently produce gibberellin (GA) phytohormones as a mechanism to influence their host. Indeed, GA was first discovered as a metabolite from the fungal rice pathogen Gibberella fujikuroi, which uses it as a virulence factor. Though some bacterial plant pathogens similarly use GA to promote infection, symbiotic nitrogen-fixing bacteria (rhizobia), which inhabit the root nodules of legumes, also can produce GA, suggesting a role in symbiosis. The bacterial GA biosynthetic operon has been identified, but in rhizobia this typically no longer encodes the final metabolic gene (cyp115), so that these symbionts can only produce the penultimate intermediate GA9. Here, we demonstrate that soybean (Glycine max) expresses functional GA 3-oxidases (GA3ox) within its nodules, which have the capability to convert GA9 produced by the enclosed rhizobial symbiont Bradyrhizobium diazoefficiens to bioactive GA4. This rhizobia-derived GA is demonstrated to cause an increase in nodule size and decrease in the number of nodules. The increase in individual nodule size correlates to greater numbers of bacterial progeny within a nodule, thereby providing a selective advantage to rhizobia that produce GA during the rhizobia-legume symbiosis. The expression of GA3ox in nodules and resultant nodulation effects of the GA product suggests that soybean has co-opted control of bioactive GA production, and thus nodule size, for its own benefit. Thus, our results suggest rhizobial GA biosynthesis has coevolved with host plant metabolism for cooperative production of a phytohormone that influences nodulation in a mutually beneficial manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.