Abstract
Advanced oxidation processes (AOP) stood out as an efficient alternative for the treatment of organic contaminants. In this work, there were proposed syntheses of mixed catalysts of pyrite and graphene oxide and pyrite and zinc oxide to treat a mixture of the drugs atenolol and propranolol in aqueous solution through the photo-Fenton process with ultraviolet radiation. The efficiency of the methodologies used in the syntheses was confirmed through different characterization analyses. It was verified that the pyrite and zinc oxide catalyst led to the best contaminant degradation percentages with values equal to 88 and 84% for the groups monitored at the wavelengths (λ) of 217 and 281nm. The degradation kinetics presented a good fit to the kinetic model proposed by Chan and Chu (2003) with R2 equal to 0.99, indicating a pseudo-first-order degradation profile. Finally, toxicity tests were carried out with two types of seeds, watercress and cabbage, for the solution before and after treatment. The cabbage seeds showed a reduction in germination percentages for the samples after treatments, while no toxicity was observed for watercress ones. This highlights the importance of evaluating the implications caused by products in relation to different organisms representing the biota.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.