Abstract

The continuous production and use in certain parts of the world of perfluoroalkyl sulfonamide derivatives that can degrade to perfluorooctane sulfonic acid (PFOS) has called for better understanding of the environmental fate of these PFOS precursors. Aerobic soil biotransformation of N-ethyl perfluorooctane sulfonamide (EtFOSA, also known as Sulfluramid) was quantitatively investigated in semi-closed soil microcosms over 182d for the first time. The apparent soil half-life of EtFOSA was 13.9±2.1d and the yield to PFOS by the end of incubation was 4.0mol%. A positive identification of a previously suspected degradation product, EtFOSA alcohol, provided strong evidence to determine degradation pathways. The lower mass balance in sterile soil than live soil suggested likely strong irreversible sorption of EtFOSA to the test soil. The aerobic soil biotransformation of a technical grade N-ethyl perfluorooctane sulfonamidoethanol (EtFOSE) was semi-quantitatively examined, and the degradation pathways largely followed those in activated sludge and marine sediments. Aside from PFOS, major degradation products included N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorooctane sulfonamide (FOSA) and perfluorooctane sulfonamide acetic acid (FOSAA). This study confirms that aerobic soil biotransformation of EtFOSE and EtFOSA contributes significantly to the PFOS observed in soil environment, as well as to several highly persistent sulfonamide derivatives frequently detected in biosolid-amended soils and landfill leachates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call