Abstract

Perfluorooctane sulfonate (PFOS) precursors have been found extensively in sewage sludge and biosolids-amended soils. The degradation of these precursors are regarded as a significant source of PFOS in the environment. In this study, the accumulation of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in the plants of seven species, namely alfalfa, lettuce, maize, mung bean, radish, ryegrass, and soybean from biosolids-amended soil, and the degradation kinetics of N-EtFOSAA in soil-plant microcosms were evaluated over 60 days. N-EtFOSAA was found in the roots of all plant species, while was not in stems and leaves. The root concentration factors of N-EtFOSAA ranged 0.52–1.37 (pmol/groot)/(pmol/gsoil). Stepwise multiple regression analysis was used to elucidate the accumulation of N-EtFOSAA in the roots of plants. The results showed that the root protein and lipid contents explain 85.0% of the variation in root N-EtFOSAA levels (P < 0.05). Four degradation products, including N-ethyl perfluorooctane sulfonamide (N-EtFOSA), perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (FOSA) and PFOS were found in soils and plant roots, stems and leaves, indicating the degradation of N-EtFOSAA in soil-plant system. Degradation kinetics fitted a first-order kinetic model well. Degradation rate constants of N-EtFOSAA in the microcosms with plants ranged 0.063–0.165 d−1, which was 1.40–3.6 times higher than those without plants. Degradation rate constant of maize was relatively higher than those of other plant species. The results is the first to reveal N-EtFOSAA accumulation in plants and degradation in soil-plant microcosms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call