Abstract

We present a nucleosynthesis process that may take place on neutron-rich ejecta experiencing an intensive neutrino flux. The nucleosynthesis proceeds similarly to the standard r process, a sequence of neutron captures and beta decays with, however, charged-current neutrino absorption reactions on nuclei operating much faster than beta decays. Once neutron-capture reactions freeze out the produced r process, neutron-rich nuclei undergo a fast conversion of neutrons into protons and are pushed even beyond the β stability line, producing the neutron-deficient p nuclei. This scenario, which we denote as the νr process, provides an alternative channel for the production of p nuclei and the short-lived nucleus Nb92. We discuss the necessary conditions posed on the astrophysical site for the νr process to be realized in nature. While these conditions are not fulfilled by current neutrino-hydrodynamic models of r-process sites, future models, including more complex physics and a larger variety of outflow conditions, may achieve the necessary conditions in some regions of the ejecta. Published by the American Physical Society 2024

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call