Abstract

There are a number of ultra-high intensity lasers in operation around the world that produce petawatt (PW) class pulses. The Z-Backlighter lasers at Sandia National Laboratories belong to the class of these lasers whose laser beams are large (tens of cm) in diameter and whose beam trains require large, meter-class, optics. This chapter provides an in-depth overview of the production of state-of-the-art high laser-induced damage threshold (LIDT) optical coatings for PW class laser pulses, with emphasis on depositing such coatings on meter-class optics. We begin with a review of ultra-high intensity laser pulses and the various approaches to creating them, in order to establish the context and issues relating to high LIDT optical coatings for such pulses. We next describe Sandia’s PW Z-Backlighter lasers as a specific example of the class of large-scale lasers that generate PW pulses. Then we go into details of the Sandia Large Optics Coating Operation, describing the features of the large optics coating chamber in its Class 100 clean room environment, the coating process controls, and the challenges in the production of high LIDT coatings on large dimension optical substrates. The coatings consist of hafnia/silica layer pairs deposited by electron beam evaporation with temperature control of the optical substrate and with ion assisted deposition (IAD) for some coatings as a means of mitigating stress mismatch between the coating and substrate. We continue with details of preparation of large optics for coating, including the polishing and washing and cleaning of the substrate surfaces, in ways that insure the highest LIDTs of coatings on those surfaces. We turn next to LIDT tests with nanosecond and sub-picosecond class laser pulses while emphasizing the need, when interpreting LIDT test results, to take into account the differences between the test laser pulses and the pulses of the actual PW laser system. We present a comprehensive summary of results of LIDT tests on Sandia coatings for PW pulses. Two sections of the chapter present specific coating case studies, one for designs of a high reflection (HR) coating with challenging performance specifications and one for the antireflection (AR) coatings of a diagnostic beamsplitter. The coatings are for non-normal angle

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call