Abstract

Members of the Vibrionaceae family are predominantly fast-growing and halophilic microorganisms that have captured the attention of researchers owing to their potential applications in rapid biotechnology. Among them, Vibrio alginolyticus FA2 is a particularly noteworthy halophilic bacterium that exhibits superior growth capability. It has the potential to serve as a biotechnological platform for sustainable and eco-friendly open fermentation with seawater. To evaluate this hypothesis, we integrated the N-acetylglucosamine (GlcNAc) pathway into V. alginolyticus FA2. Seven nag genes were knocked out to obstruct the utilization of GlcNAc, and then 16 exogenous gna1s co-expressing with EcglmS were introduced to strengthen the flux of GlcNAc pathway, respectively. To further enhance GlcNAc production, we fine-tuned promoter strength of the two genes and inactivated two genes alsS and alsD to prevent the production of acetoin. Furthermore, unsterile open fermentation was carried out using simulated seawater and a chemically defined medium, resulting in the production of 9.2 g/L GlcNAc in 14 h. This is the first report for de-novo synthesizing GlcNAc with a Vibrio strain, facilitated by an unsterile open fermentation process employing seawater as a substitute for fresh water. This development establishes a basis for production of diverse valuable chemicals using Vibrio strains and provides insights into biomanufacture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call